古志远教授课题组在ADVANCED FUNCTIONAL MATERIALS发表研究论文

时间:2020-09-08 来源:化科院 点击数:

Nonlinear Ion Transport through Ultrathin Metal-Organic Framework Nanosheet
Zhang, Q (Zhang, Qi)[ 1 ] ; Cao, PS (Cao, Pei-Sheng)[ 1 ] ; Cheng, Y (Cheng, Yue)[ 1 ] ; Yang, SS (Yang, Shi-Shu)[ 1 ] ; Yin, YD (Yin, Yun-Dong)[ 1 ] ; Lv, TY (Lv, Tian-Yi)[ 1 ] ; Gu, ZY (Gu, Zhi-Yuan)[ 1 ]*(古志远)


[ 1 ] Nanjing Normal Univ, Jiangsu Key Lab New Power Batteries, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci,Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Peoples R China


ADVANCED FUNCTIONAL MATERIALS,202008,2004854


The rational design of artificial solid-state nanopores is of great importance in the discovery of intriguing ion transport phenomena. 2D metal-organicframework (2D MOF) nanosheets with single crystallinity, aligned nanochannels, ultrathin thickness, and diverse functionalities are highly potential solid-state nanopores. An electrophoretic method is developed to successfully fabricate MOF nanopores supported by SiN(x)substrate, which is confirmed by high-resolution transmission electron microscopy. A giant gap around 4 V together with ionic current rectification is discovered in nonlinear voltage-activated current-voltage curves, revealing the synergy of the hydrophobic effect and charge effect in MOF nanopores. The charge effect embodies the different contribution current which results from the enrichment and depletion of ions in MOF nanopores by COMSOL simulation. Moreover, 2D MOF nanosheets with different surface charges, hydrophobicity, and pore sizes demonstrate the universality of nanopore fabrication and further confirm the synergistic mechanism. The nonlinear ion transport in the ultrathin MOF nanosheets will provide an opportunity to explore further applications in solid-state nanopores.

文章链接:
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202004854

Copyright © 2009-20010 南京师范大学 化学与材料科学学院. All rights reserved.